{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Area under normal pdf using Simpson's rule\n", "\n", "**Randall Romero Aguilar, PhD**\n", "\n", "This demo is based on the original Matlab demo accompanying the Computational Economics and Finance 2001 textbook by Mario Miranda and Paul Fackler.\n", "\n", "Original (Matlab) CompEcon file: **demqua04.m**\n", "\n", "Running this file requires the Python version of CompEcon. This can be installed with pip by running\n", "\n", " !pip install compecon --upgrade\n", "\n", "Last updated: 2022-Oct-23\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initial tasks" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from compecon import qnwsimp\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "n, a, z = 11, 0, 1\n", "\n", "def f(x):\n", " return np.sqrt(1/(2*np.pi))*np.exp(-0.5*x**2)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "x, w = qnwsimp(n, a, z)\n", "prob = 0.5 + w.dot(f(x))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAEBCAYAAAD1rZXsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtbUlEQVR4nO3dd3hc1ZkG8PdOVxv13rtkyZLcbWxjDDYOBBJKElggJPEGsuyS7AbCQ0KSZQmQEJKQsAkJmxAgxmCMgZjiSrGNG+5yk5uK1XvXSFPv3T9GnoJlaWRLulPe3/P4ke6MrvTZlubVufd85wiSJEkgIiKiUSnkLoCIiMgXMDCJiIg8wMAkIiLyAAOTiIjIAwxMIiIiD6hGe1IURdhsnERLRESBQ61Wjvj4qIFps0no6RmclIKIiIi8UWxs2IiP85IsERGRBxiYREREHmBgEhEReYCBSURE5AEGJhERkQcYmERERB4Yta2EiKaOKElo6zeh02CGySYiRK1CdKgG0cFqCIIgd3lEAY+BSSSj3iELtpxux+6aThxp6MWQRbzoY6JDNChL1uPa3BhcnR0N3SWaqolocgmj7Ydpsdi4cAHRJGjpM+Lvn9dh06k2mKwXh+SlhOtU+MaMJPzLzBSE6fj7LtFkuNTCBQxMoilktop4eV8dVh2oh2WEZSe1GjX0IUFQKhUwW6zoNwzBYrVd9HGRQWr8x+IMfKU4gZdriSYYA5NIZpXtBjy24RRqOt1/pmIiw1CQmYy0xBjoQ4PdnhNFCd19A6hpbMOZmkb0G4xuzy/MjMLPV+QhOkQz6fUTBQoGJpGMNp1qxdNbz7ldfo2N0mNeSS5S4qM9+hyiKKKyrhX7j5/DwKAzOGNCNPj9rUUoiB/5h5yIxoeBSSQDSZKw6kAD/rSzxvGYSqnA/NI8FOWkXtblVIvVhgPHK3HsbK3jMZ1Kgae+XIAlOTETUjdRIGNgEk0xUZLw/I5qvHGo0fFYpD4Ey68qRVR46BV//vqWDny05xjMFisAQADw8xV5uLk44Yo/N1Eg424lRFNIkiQ8t63KLSyT4iJxy3VzJyQsASA1IQa3LpsHfUiQ/WsCeHLLWWysaJ2Qz09E7hiYRJPgpb11WHukyXGcmRKHG6+eCa1GPaFfJ1IfgluXzUN0hP03YgnAE5vP4KMz7RP6dYiIgUk04d460oS/7nXeX8xKjcfyBaVQKSdnwYEgnQY3XTPLMXIVJeDxTadxtLF3Ur4eUaBiYBJNoH3nu/G7bZWO45SEaFw3bzoUisntlQzSanDzNbMQERYCALDYJPzovQo09g5N6tclCiQMTKIJ0tAzhMc2nII4PI0uLiocKxaWQqmcmh+zIJ0WN149Azqt/bJvz5AFP/znSQyYrFPy9Yn8HQOTaAIMWWx45L0K9Bnt4RSs02DFojKoVVO7fJ0+NBgrFpY5RrQ1nYP41UfnMMpkeCLyEAOTaAL87tMqVHYYAAAKhYAVi8oQEqSVpZbE2EgsmV3kON56ph3rj7fIUguRP2FgEl2hj8+0470TzkBaPLMQ8dER8hUEID8zCQVZyY7j335ahXPtAzJWROT7GJhEV6Clz4hffnTOcZyTluAWVHJaOKPAMXPWbBPxsw2nYR7HzihE5I6BSXSZREnCE5vPoH94Uk1YsA6LZxV6ze4hapUSy68qgWp40lF15yD+5tLuQkTjw8Akukzrj7fgYL2911EQgOsWlEz4wgRXKlIfivmleY7jVQfqcbK5T8aKiHwXA5PoMrT2m/C/O6odx6X5GUiIiZCvoFEU5aQiKS4SwPCiBpvPjGvTaiKyY2ASjZMkSXjm43MwmO0bO4eHBWN2UbbMVV2aIAi4Zk4RVCr7SkO1XUNYtb9e5qqIfA8Dk2ictlV2Yld1l+PYNYy8lT40GPNLch3Hr+yvQ303VwEiGg8GJtE4GC02/H5bleN4WnYKEmMjZazIc9OyUxEbqQdgXzrv159UckEDonFgYBKNw6v769HSbwIA6LRqzHMZtXk7hULA1bOn4cIk3n213dzVhGgcGJhEHmroGcJrB5z3/uaV5HrdrNixxEbpUZST5jh+/rMaGC02GSsi8h0MTCIP/X57Ncw2+yXM2Cg9CjK9Y4GC8ZpTnO1YoL2t3+S2yTURXRoDk8gDe2q68FlVp+N40UzvWaBgvLQaNeYW5ziOX9lfh44Bk4wVEfkGBibRGGyihD9+VuM4LshMRnx0uIwVXbmCrGTHsnlGi4gXd3MFIKKxMDCJxrDpVKtjJxKVSom503PGOMP7KRQKLChzrgD0/okWnGnj4uxEo2FgEo3CZHUffZXmpyNYpm27JlpqQgzSEmMAABKAP2yvHv0EogDHwCQaxbryJrQOt5EEadUozc+Qt6AJtqAsz3Ev9mB9D/bXdstcEZH3YmASXUKf0YJX9tU5jmcVZUOjVslY0cSL1IeiIDPJcfzCrvNczIDoEhiYRJfwj/0N6DPat+7ShwahMCtF5oomx6yibCgU9lFmRUs/PqvqGuMMosDEwCQaQdegGW8dcfYnzp2eC6XSP39cQoN1KMpJdRy/uPs8RI4yiS7in68ARFdo1f4GGIe3wIqOCEV2arzMFU2umYWZjgXkKzsM+JhL5hFdhIFJ9AUdBjPePtrkOJ5dlOOzixR4KkinxfRc55J5f9ldC6vIUSaRKwYm0Re8dqDescFyTEQYMpJjZa5oapQVZDgmNTX0DGHr6TaZKyLyLgxMIhcdBjPeOdrsOJ5dnO33o8sLtBo1SvPTHccv76uDjaNMIgcGJpGLVftdRpeRYUhPCozR5QXFuWmOUWZt1xC2neuQuSIi78HAJBrWaTDj3WMuo8uiwBldXqDVqN1mzL70eR37MomGMTCJhr15uDGgR5cXlOSlQzXcQlPVYcDOavZlEgEMTCIAwIDJinXlzpmxMwuzAm50eUGQToNp2c5R5t85yiQCwMAkAgC8Xd4Eg9kGAIgIC0ZmSpzMFcmrtCADSoX95aGipR/7a3vkLYjICzAwKeAZLTasOexc1aesIDNgR5cXhARpUZCV7Dh+6fO6UT6aKDAwMCngfXCyFV2DFgD2oMhNT5S5Iu9QVpABxfAvDuWNvShv6JW5IiJ5MTApoFlFCasP1DuOSwsy/HbN2PEKCwlCXoZzJ5NVBxtkrIZIfnxloIC29XQbmvrs+13qNGoUulyGJKC0wLmQwc6qTpzvHJSxGiJ5MTApYEmShFUuo8vpeWlQq/xrv8srFakPdWuvWc1RJgUwBiYFrD3nu1HVYR8xqVVKFLssPk5OZQUZjvc3VLSiY8AkXzFEMmJgUsB6w2W0VJiVAq1GLWM13ishJgJxUeEA7Pd81x5pGuMMIv/EwKSAdLZtAPvregAAgmC/HEsjEwTBbZT59tFmGMxW+QoikgkDkwLSGy59l1kp8QgLCZKxGu+XkRwHfWgwAPuqSO8db5G5IqKpx8CkgNM+YMKWU869HktctrSikSkUgtvWX28caoTVJspYEdHUY2BSwFlX3gTr8D6PCTERiI+OkLcgH5GfkQSd1n6ft7XfhE/OcusvCiwMTAooQxab2wbRHF16TqVSum395bqcIFEgYGBSQPnwZCv6jPYJK/qQIGQkBfYi6+NVlJMKhcK+XN7Jln4cb+qTuSKiqcPApIBhEyWsOeRsJZmel+548SfPBOu0yElzrrX7JkeZFEAYmBQwdlV3or7HCADQqlUoyEwa4wwaSYlLC87HZ9vR2s+FDCgwMDApYLx+yDkaKsxOgVrNZfAuR0ykHomxkQAAUYLbxttE/oyBSQHhTOsAjgxvT6UQBC6Dd4VcR5nvHmuG0WKTsRqiqcHApICw9ojLQgWp8QgN1slYje9LT4pDWIj937DfaMVGl75WIn/FwCS/1zNowZbTzhd0ji6vnEIhoDjX2ZKz5lAjJEmSsSKiycfAJL+3/ngzzDb7i3lspB7x0eEyV+QfCjKToFYpAQDnuwaxv7ZH3oKIJhkDk/yaVZTwtstCBcW5aRAEtpJMBK1GjfxM54bbb7DFhPwcA5P82meVHY62hyCtBjlpCTJX5F+Kc50r/+yp6cL5rkEZqyGaXAxM8mtvuuzdWJidAqWS3/ITKSIsBOlJsY7jt7hXJvkxvnqQ3zrb5t5KMi07ReaK/JPrXqIfnGxBv5F7ZZJ/YmCS33Id7WSmsJVksiTHRSEqPBQAYLSI+OAk98ok/8TAJL/UM2TBZrdWktRRPpquhPCFhSDWHmmCTWSLCfkfBib5pfeOt8BktW9wHBMZhoSYCHkL8nO56YnQauxLDTb1GrG7pkvmiogmHgOT/I5VlPC2y/qmbCWZfGqVEoVZznvE3MWE/BEDk/zOzqpOtAy3kui0araSTJGinFRc+L3kQF0PqjoM8hZENMEYmOR3XNeNLcxKgUqplLGawBEWEoSMZOeG3GwxIX/DwCS/UtluwKF6eyuJIAgoyuFkn6k03WXyz4aKVvQZLTJWQzSxGJjkV1xHl5kpcWwlmWKJsZGIHm4xMVlFvHecLSbkPxiY5Dd6hyzY5LLN1HTuSjLlBEFAsctCBm+xxYT8CAOT/Mb7J5ytJNERbCWRS25aInQaNQCgpd+EnVWdMldENDEYmOQXbKKEdS6tJNPZSiIblUqJQpdlCN88whYT8g8MTPILO6s60dw33EqiYSuJ3OwtJvZfWA7V96KynS0m5PsYmOQX1pa770qiUrGVRE6hwTpkpjhbTNZylEl+gIFJPq+qw4CDdT0AAEEAdyXxEq6TrjadakPPEFtMyLcxMMnnue1KkhyHsJAgGauhCxJiIlDUUgnA3mLyPltMyMcxMMmn9Rkt2FjR6jguZiuJ1xAEAd8+9IHjeF15E6xsMSEfxsAkn/bBiVYYh1tJosJDkRgbKXNF5OrmU58hatC+8lJLvwmfscWEfBgDk3wWW0m8n85mwV3lmxzHa7mLCfkwBib5rN01XWjsNQIAtBoVctITZa6IRnLPkU1QDP8ec7ihF2fbBuQtiOgyMTDJZ73l0qpQkJUCNVtJvFLCQCeW5MY6jrmLCfkqBib5pPOdg9hX2wPA3krCXUm8262lyY73N59uQ88gW0zI9zAwySe95XLvMj0pDnq2kni1okQ9CuOdu5isP94sc0VE48fAJJ8zYLJiw0lnK8n0XI4uvZ0gCLhjhnOUyRYT8kUMTPI5H5xsxaDFBgCI1IcgKS5K5orIE8vzYxEVbN/FpG3AjB2VHTJXRDQ+DEzyKaIkYZ3LZJ9itpL4DI1KgVtLnDOZ2WJCvoaBST5l7/lu1PfYW0k0ahXyMthK4ktuL02EcrjH5EhjH860ssWEfAcDk3yKWytJZjLUKpWM1dB4xYZqsSwvxnHMvTLJlzAwyWfUdg1iT02347iYk318kuvkny2n29A1aJaxGiLPMTDJZ6xzayWJgT40WMZq6HIVJ4ZhWkIYAMBik7D+GHcxId/AwCSfYDBb8eFJ111J0mWshq6EvcUkyXH89tEmWG2ijBUReYaBST5hw8k2GMz2VpKIsBCkxLOVxJcty3O2mLQPmPHpObaYkPdjYJLXEyXJbbJPcW4qW0l8nEalwO2lLi0mXF+WfAADk7ze3vPdqO0eAgCoVUrkZSSNcQb5gttKEqEabjE51tSHipZ+mSsiGh0Dk7zemkMNjvcLs1KgUbOVxB/EhGqxLN91FxO2mJB3Y2CSV6tsN7jtSlKclyZvQTSh7nSZ/LP1TDs6DWwxIe/FwCSvtuawc3SZmRzPXUn8TFGiHsWJzhaTfx7jLibkvRiY5LU6DWZsPtXmOC7JZyuJP7rTZSGDd442w8IWE/JSDEzyWu8cbYLZZt8CKi5Kj/jocJkroslwbV4MYkI0AIAOgxmfnmWLCXknBiZ5JZNVxNvlzstzJfkZbCXxU2rlF1tMOPmHvBMDk7zS5lOt6B6yAABCg3XISomTuSKaTLeWJEKttP9CdLy5Hyeb+2SuiOhiDEzyOpIk4Y1D7gsVKBT8VvVn0SEaXO/SYsKFDMgb8VWIvM7+2h5Udw4CsC9UUJiVInNFNBXumOmc/PPRmXZ0sMWEvAwDk7zO6y4LFeRnJkOrUctYDU2VwvgwlCTpAQBWUcK7RznKJO/CwCSvUt1pwN7zzj0vp3OhgoDiuovJuvJmGC02GashcsfAJK+yxuXeZUZyLMK552VAuTY3BglhWgBAz5DFbUs3IrkxMMlrdAyYsKHC+QJZkseFCgKNSqnAXbOd96xXH2yATZRkrIjIiYFJXmPN4SZYXBYqSIyNlLkiksNXixOg19kX2G/sNXKvTPIaDEzyCgMmK95xmeRRVpjJhQoCVLBGia+VOe9lvnagHpLEUSbJj4FJXuHdo80wmO0TPMLDgpGRxIUKAtkdM5KgVdlfnk61DuBgfY+8BRGBgUlewGwVseawc7JPWUEGFAqOLgNZVLAGNxXFO45XHWgY5aOJpgYDk2S3saLV0aQeEqRFXnrSGGdQILh7Vgou/N70+flunG0bkLcgCngMTJKVTZTw2kHn6GF6XhqUSn5bEpAaGYRrc2Mcx67fJ0Ry4CsTyWpHZQfquocAABq1CtOyU2WuiLzJPXOc3w8fnW5Dc59Rxmoo0DEwSTaSJOEfLveminJSoVGrZKyIvE1RQhhmp9r3QbVJwGreyyQZMTBJNofqe1HR0g8AUCoUXAaPRnTvXOco870TLVyUnWTDwCTZvLKvzvF+fmYSgnVaGashbzU/PRKF8aEA7BuLv857mSQTBibJ4mhjL/bX9QAABEFAaUGGrPWQ9xIEAf8633n14Z2jTegZtMhYEQUqBibJ4u+fO0eXuekJXGSdRrU4Oxo5MSEAgCGLiDWHOcqkqcfApCl3srnPsYWXIAAzC7Nkroi8nUIQsNJllLn2SBP6jVYZK6JAxMCkKfeSy+gyOzUBEfoQGashX3FtbgwyooIAAAazDWuPNI5xBtHEYmDSlDrd2o9d1V2O45nTOLokzygVAr4zzznKfPNwIwxmjjJp6jAwaUr93W10GY+o8FAZqyFfc31BHFIidACAXqMVb5c3y1wRBRIGJk2Zs20D2F7Z6Tjm6JLGS6UQ8G2XvszXDtRjwMRRJk0NBiZNmb/trXW8n5kSh+iIMBmrIV/15WnxSA53jjJdd7ohmkwMTJoSJ1v63UaXszi6pMukUipw34J0x/HrBxvQO8S+TJp8DEyaEi/uOu94Pys1HjGRevmKIZ/3pcI4txmzq7n6D00BBiZNukP1Pfi81tl3Oac4R+aKyNcpFQLuvyrDcfzm4UZ0DXKNWZpcDEyaVJIk4c8uo8u8jCREsu+SJsB1eTHIjbV/LxmtIl7dVy9zReTvGJg0qXbXdOFYUx8AQKEQMLsoW+aKyF8oBAHfcxllvnO0Ca39JvkKIr/HwKRJI35hdDktOxVhIUHyFUR+5+rsKExLsM+2Ntsk/P3z2jHOILp8DEyaNB+face5dgMA+8zGmYWZMldE/kYQBDyw0Dlj9v3jLajuNMhYEfkzBiZNCotNxF92n3ccT89LR3AQ97ukiTcvPRJz0iIAADYJ+ONnNfIWRH6LgUmTYl15Exp6jAAArUaFMu53SZNEEAT855IsCMPHu6q7cHB4r1WiicTApAnXM2TBS3uda8bOmpYNrUYtY0Xk7/LjQnFjUbzj+Pkd1RAlScaKyB8xMGnCvbS3Fv3D63uGhwahKCd1jDOIrtwDCzOgVdlf0k63DWDL6TaZKyJ/w8CkCVXbNYi3jzp3kJhfmgelMjC/zaxmo+N982A/bBY21k+m+DAt7pqV7Dj+887zMFlFGSsifxOYr2Q0af74WQ1sov1SWGJsBDKS42SuaOpZzSa8/5Nv4N2HbsaWp7+LukPb8e5DN6Pp2B65S/N7985JRWSQ/fJ/S78Jb3JhdppADEyaMIfqe7CjyrnA+lVlBRAEYZQz/FPzic8h2iz42v9uRlh8Gj75zYPQBIchcfp8uUvze6FaFe67ytlm8vLndegY4GIGNDEESbr0nXGLxYaensGprId8lFWUcO/qw46+y7z0RFw7f7rMVcnDMmSAeWgAIVH2SShDvZ3QhkVAoVDKXNnU+/FMDQCguqkfYaqpmYRjtYm467XDqOm0v3bdUBiHX9xYMCVfm/xDbOzIWw9yhEkT4p3yJrdFCuaW5Mpc0eTprj+HV+8qReMlLrGqg0IcYQkAQeHRXheWtQc+wT/uLkNvs/+tjKNSKvCjpc4lGDedakN5Q6+MFZG/UMldAPm+ToPZbZGCmdOyEBqsk68gAM0n92PzkyvdHlNpgxCelInsxTej8Et3XXaI7V/1LOLyZyC55Cq3xzf94jtoqTgw5vnTbvgm5n3r0cv62hMlfc51iEzLw8E3nsN1Dz8vay2TYW56JK7Li8EnZzsAAM9+WonX7pkJpSLwbhHQxGFg0hX742fVMJhtAIDwsGCU5mfIW5CLrKtuRMqMxZAkCYPd7ajcsR77V/0aPQ1VWHj//4z787WdLUfT8b249kf/e9Fz0750N/KW3jbieV11Z3Hig1egUKmRPnfZuL/uZJh2w93Y+eeforu+EpGp/rfl2n8tycKu6i6YrCLOtRvw7rFmfL0sSe6yyIfxkixdkSMNvdhQ4ex3WzSzwKvaSKIyC5G9+GbkXP0VlHz1X3HTU2sQHBmHs9vewVBPx4jniKINVtPQiM+d3vomtGERSC1bfNFz6XOXIXvxzRf9iUzPx7nt66FQqXHtD3+PhMJZl/33sZqGUH9oO0yGvsv+HM56l0OlDcKZj9+64s/ljRL0Oqycl+Y4/suu8+g0sLWHLh9HmHTZrDYRv/7knOM4KyUeqQkxMlY0Nk1wKGJzS1G7/yP0tzWgoXwXdr34M6z46d/QdvYoKnesx0BnCxbe9z/IveYWt3NFmxW1Bz9F6swlUKg8W7mou74SW576LiyD/bjmh88hddY14665t+k8Gsp3oqF8J1pPHYTNYsbtf9gIbYh+xI8XrRa89q05EG3WEZ9Pm3Mdrnv4eah1wYgvmInzn2/B/O88Nu66fMHds1PwwckWNPQY0W+y4rltVXj6pkK5yyIfxcCky7bqQAOqOuwzEdUqJa6akS9zRWOTJAn9rfZl+7RhkQDOAwAOrP4tRJsVedd9DeqgUIQnZVx0bmd1BazGQcRmezb7t6ehCpufWgmToQ9L//O3SJ99rUfnWc1GNJ/cj8byXWg48hn62xoAABEpOSj80t1IKVuM0LjkS55vs1qw6N+evOjxkxtfQ2dNBdJcQjs2txSNR3ejp7EaEclZHtXnS7QqBX58XS4efOc4AGDrmXbcOC0eC7OiZK6MfBEDky7L+c5BvOSy9+DsomzZJ/qMxGY2wtjXDcB+D/PUljfQVXsGsbmlCE9MR9uZIwDsiw189Zl1UGkvvV9nT2MVACAsfuyl/noaq7H5yZUwDfThmh/8Zsz7llazCWc/fRsNR3aipeIAbBYTVNogJBbPQ/HN30HKjKsRGpPo0d9ZrQtG9uKb3R478Prv0FlTgTn3/Ai519zqeFw//Hfpaajyy8AEgHkZkbhxWhw2Dt86eObjc1j77dkI1njXzGXyfgxMGjdRkvDU1rOw2Ox9dXFRekzPSxvjLHkcWfcCjqx7wXEsCAqkzlqKhfc97vZxBcvvGDUsAQwHL6ANDR/143qbarD5yZUw9vdgyQ+eRca85WPWOdTTgX2v/goAoFCpUXzTt1F6279BExw65rmjkSQJ+179FU5tXYP5K3+GwuvvdHteGxoBADD2do5wtv/4ryVZ2F3dhV6jFS39JvzfnvP44TXZY59I5IKBSeP2dnkzjjbZJ50oBAFL5hRBofCeiT6u8q77OjLnXw9AgEoXhPDEjBEDT5+YfvHJXzTckTDKWh/oba7F5if/Fca+blz94K+QOX+FR3UGRcRg3rd+jIbynWipOIgTH76K0x+tRWLRXCSXLUZK2SKExaV49LkukEQRe156Aue2/RML739ixBm8Eob/Ln6+IlNksAYPLc3G45vOAADePNyI5fmxKE4c+T4w0UgYmDQuzX1GvLDTuUFvWWEmoiNGXhXDG+gT0pA0fcGYH6fSjH05WRdmv+9lMozcBN/XUofNT67EUG8nFv/7L5F11Y0e16nSaDHthnsw7YZ77PcwT+xDQ/kuNJbvRP3hHQCA8KRMJJcuQkrZIiQWz4NCeekfX1G0Ydeff4rqvZtx9YPPIGvhyLWYB+x/F53e/+/p3VAYh40VrdhX2wNRAh7fdAavf3MmdGpemiXPMDDJYzZRwuObzmDQYu+5jAgLwaxp/nnfayQXehX7Rlgdp7+1Hpt+8R0Mdbdj8b8/jexFX77sr6PS6JA6cwlSZy4BYL/E23DEPkv2zMdrUbHpNdz+h43QJ4x8GVy0WrDjj4+i7tA2XPOfv0HG3EtfEu5rqXP7u/kzQRDw2PI83LXqEAxmG+q6h/DCrvN4eCkvzZJnGJjksTcONeDI8BJjggAsnVvkVT2Xky0qsxDqoFC0nzvm9nh/WwM2PbkSQ93tWPTAkxdNuLlS4UmZCE/KRNGX74XFOIjmk/uhDYsY8WNtFjO2/eEhNB3bi2sf+oMjdC+lvfIYgsKjEZ6UOaE1e6ukcB1+eE0Wntpqb4d683AjlmRHY3ZahLyFkU9gYJJHzrUPuC9/V5iF+JgI2eqRg0KhRPrcZag7+ClsFjOUag1MA73Y/IuVMHQ0I7lsMQRBgaqdH4x4fnhyFmKyikZ8zmToQ8XG1zyuJT5/xoiPf/bCT1B/aDtyltwCs6HvolpSZy11TCSyGAfRevqw26zZQPCV4gRsr+zEruouAMAvtpzBG/fOQqiWL4c0On6H0JjMVhH/vfGMY1ZsbKQeM4sC51Ksq4Lld6Byx3rUH96BjHnL0XbmCAY6mgAAjeU70Vi+85Lnzl/5s0sGptnQj/J3/uJxHdmLb75o8pIkSWg8ugsAULljPSp3rHd7XhAUuOfVfY7j8/s+gtU0hPxlX/f46/oDQRDw0+W5uOMfh9BntKK5z4RnP6nEEzfkB+R2dOQ5bu9FY3puWxXWDG/Eq1Iq8LXrFyBCHyJzVfLZ+qvvwWocwo1PrJK7lCvy/k++gZCYxEldfF2O7b08tfV0G3664bTj+L9X5OHm4gQZKyJvwe296LJsO9fhCEsAmF+aF9BhCQBz7nkEbeeOovHobrlLuWy1Bz5Bd91ZzL7rIblLkc31BXG4qci5Dduzn1Q69tAkGglHmHRJDT1D+Obqwxgw2WfFZiTHYsXCMl62Io958wgTAIYsNty7+jDOd9kX28+JCcErd5Wx1STAcYRJ42K2injsw1OOsAwL0WHp3GKGJfmVILUSv7ypEBql/fu6ssOA322rkrkq8lYMTBrRc9urcKp1AACgUAhYtqAUWo1nO3QQ+ZLc2FA85NKLuf54C9491ixjReStGJh0kXePNuGdo84XjPmleYiPHn39VCJfdltJIlYUxDqOf/NJJY42jryiEwUuBia5OdzQg2c/dV6Syk6Nx/Rc71xYnWiiCIKAn12fh7xY+4Q2qyjh0Q9Ooa3fJHNl5E0YmOTQ1GvEo++fgk20T86IiQjDNXOLeN+SAoJOrcRvbylCRJD91kOnwYxH3q+AcXgpSCIGJgEABkxWPLz+JHqGLACAIK0GKxaVQa3i2hYUOBL1OvzqpkIMzwFCRUs/frbhtOOXSApsDEyC2SriR++dRGWHAYB9ks/1C0sRFjL6/pBE/mh2WgQeWupcjH5HVSee21Y16rZuFBgYmAFOlCQ8vuk0DtU7JzgsmV2ExNhIGasiktc3ZiThntnO/UffKm/C64caRzmDAgEDM4BJkoTntlXh47MdjsfmleQiPzNJxqqIvMP3r87EsjznzNnnd1TjgxMtMlZEcmNgBihJkvCX3eex9kiT47Hi3DSUFWTIVxSRF1EIAv7nhnyUJesdjz219Sy2nm6TsSqSEwMzAEmShBf31OKVffWOx7JS47FwBndrIHKlVSnwu1uKHO0mogT898bT2HauY4wzyR8xMAPQ3/bW4uXP6xzHaYkxuG7edIYl0Qj0OjX+9LXpyIwOBgDYJOCxD09hRyVDM9AwMAOIJEl4YWcN/rbXGZapidFYsbAMSiW/FYguJTJYgz9/vQRpkfaZ41ZRwqPvV2BjRavMldFU4qtkgLCKEp7eeg6v7ndehk1NYFgSeSomxB6aqRE6APaR5uObzmBdedMYZ5K/4CtlADBZRfzkgwq85zLDLy0xBisWlkGl5DZGRJ6KD9Pir3eWISfGuSfss59U4m97atmnGQAYmH6u02DGv687hu2VnY7H8jKSsGJRGVQqhiXReMWEaPDiN0owPdG5Z+Jf99bi5xtPw2QVZayMJhsD04+dbu3HvasP41hTn+Ox0vx0LJ1bBKWC//VElys8SI0/fa0E89IjHI9tOd2OB946hk6DWb7CaFLxVdNPbT3dhu++eRRtA/YfXkEAFpTlY0EZW0eIJkKwRok/3FqM20oSHY8db+7Dt14/4vZLKvkPBqafMVpseObjc/jpBuflIY1ahRsWz0RpfrrM1RH5F5VSgR8vy8FDS7OhGP49tLXfhPvXHsUbhxp4X9PPMDD9SE3nIL7zRrnb5s/hocG4bdk8pCXGyFgZkf8SBAH/MjMZz91SDL3OvruPTZTw++3VeOS9CnQP8hKtv2Bg+gGbKOH1gw345urDjh1HACArJR63LZ+HCH3IKGcT0URYmBWF1d+ciaIE52SgHVWduOPVQ/iUKwP5BUEa5ZqBxWJDT8/gVNZD41TVYcBTW8/iRHO/4zGlUoGFZfkozE7h/UqS1Y9nagAA1U39CFMFxuVJi03E8zuq3dZpBoAVBbF4aGk2ooI1MlVGnoqNDRvxcQamjzKYrXhlXz3eONQAi835XxgdHopr509HdMTI/+FEUykQA/OC3TVdeHrrWbQPOC/JhmlV+LeFGbi9NBFKBX+Z9VYMTD8hShI2VbThTztr0OEyfV2hEDBrWhbKCjK5cg95jUAOTADoM1rw3LYqbKhw3+EkLzYEDy3NxqzUCHkKo1ExMH2cJEnYWd2F/9t9HmfbDW7PxUeHY8nsaYjiqJK8TKAH5gW7q7vw222VaOgxuj0+PyMS/7EoAwXx/Nn1JgxMHyVKEvbUdOGlvXU42dLv9lywToP5pXnITU/kvUrySgxMJ5NVxOqD9XhlX/1FKwJdkxONb89NRVGi/hJn01RiYPqYIYsNG0624s3DjajtHnJ7TqVUYHpeOmYUZkKjVslUIdHYGJgXa+4z4q97arGxohXiF/5JZqWG457ZKViQEcV7nDJiYPqIqg4DPjzZig9OtKDXaHV7TqlQYFpOCmYUZiJYp5WpQiLPMTAvrbrTgBd31464GXWiXouvTk/AV4oTEBvKn/WpxsD0Yt2DZmw93Y4NFa041Tpw0fMatQqFWcmYnpeO0GCdDBUSXR4G5tgq2w1YdaAeW0+3wfaFfyKlACzIjML1BbFYnBWNUC2vKE0FBqaXaegZwmdVndhe2Ymjjb0XXZoBgLCQIEzPS0NBZjIvvZJPYmB6rrnPiLWHm/DhyYuvLgGARingqswoLM2NwYKMSESyn3PSMDBl1me04HB9Lw7U9eBAXQ9qukb+d1UoBGQkxyE/IwmpCTFQ8D4G+TAG5viZrSK2nevAP48341B974gfIwAoiA/FgoxIzE2PRFFCGHRqbtc3URiYU8gqSqjpNOBkcz8qWvtxorkfle0GjPZykRATgdz0ROSkJUCrUU9ZrUSTiYF5Zeq7h/Dx2XZ8fKb9onYyV0qFgIK4UJQk6VGSpEdxYhjiw7ScPX+ZGJiTwCZKaO4zoqZzEOe7BlHTOYiarkFUthtgHGMjWaVCgeT4KGQmxyE9OZaTeMgvMTAnTm3XID4914E9NV043tR30f3OLwrVKpEbE4LsmBDkxoYgIzoYKeFBiAnVQMEgHRUDc5xsooQ+owVdgxZ0D1rQ2m9CS78RzX0mtPQZ0dJnQku/yeMd1gUBiI3UIzk+GklxUUiIiYBaxUso5N8YmJOj32jFgfoe7K3pwtHGvkve4hmJVqVAUrgOKeE6JEcEIS5Ug5hQDWJCNIgJ0SI2VIMQjTKgR6cBEZg2UYLFJsJsE2G2ijDbJMf7g2YbDGYbDGYrDGbb8LF1+DEbDCYruofsAdkzaEHPkGXUS6hjCQnSIi46HHFR4YiL0iM2KpwTdyjgMDCnRu+QBSea+3GsqRfHmvpwtt2AvhEmDnlKq1IgKliNMK0K+iA19FoVwnQq51udCkFqJXQqBXRqpf19tQJBKvtb3fBzaqXCJ/tJLxWYU/YKfqq1H+8cbYbBZIVNsi/1ZhMliBJgkySIogRRklyes69yI7p83IVjUbLfJzRbRbeAHOsSxWQI0mkQqQ9BpD50+K39/eAgXmIloqkRHqTGwqwoLMyKAmB/DW0bMKOy3YBz7QOo7DCgvseIxp6hEWfgfpHJKqK5z4RmmK64NgGAWilApVBArRSgVAhQKxVQKQS3x1UKAQpBgEKw7zGqUAhQAPbHFPa3guN4+OMgIC5Mg3+ZmYwE/eS33E1JYEqShMc+PHXROopezzIEmAftf0wGwNgLwdgHGPuAoV7A2AeTzYwWAC1y10rkhX48/Pau22+A0vcGGn4nFECwUgtrUASsukjYdOGwaUIhakJhG/4jakIhKSdu4qEEDF/tswGWCfu0btoHzPjlTYWT88ldTElgCoKARL1uSgJTtJgAmwWSzQLJOvzWZoFoHoJkHoJoGoRkHoToeN/+VjQPQhzqg83QC3GwB7ahPkC0TXq9RP7MkZF7d8lZBo2ToAmGMlgPhS4UCl3Y8FuXP9pgCGodFGodBLUWglo7/P6FYx0UKi2gVEIQJn/3pET91FzRm7J7mGariN+89k/s2L0bAiRAGv4DEYIkAZIIQBp+/wuPS5LzHAwfSyIE0QaIVgiSDYJoBSQR/CWWiMh7SBAAhRKSoIAkKAFBAUnh+tb1OQGAAAgCJJf3gQvHCvdjQcCyRQvwo3tvn9CZvwEx6YeIiOhKXSowudMwERGRBxiYREREHmBgEhEReYCBSURE5AEGJhERkQcYmERERB5gYBIREXlg1D5MIiIisuMIk4iIyAMMTCIiIg8wMImIiDzAwCQiIvIAA5OIiMgDDEwiIiIPMDCJiIg8wMAkIiLyAAOTiIjIAwxMIiIiDzAwiYiIPKCSuwAi8j933nknjhw5csnn58yZg9WrV09hRURXjoFJRBNu+fLlWLhw4UWPv/vuu2hqasK8efNkqIroynC3EiKaEr/+9a/x8ssv47bbbsPTTz8NhYJ3hMi3cIRJRJNKkiQ88cQTWLNmDe6++278/Oc/hyAIcpdFNG4MTCKaNDabDY899hjWr1+P7373u3jkkUfkLonosjEwiWhSWCwWPPzww9iyZQu+//3v48EHH5S7JKIrwsAkoglnMpnwgx/8ANu3b8ejjz6KlStXyl0S0RVjYBLRhBocHMQDDzyAffv24fHHH8ddd90ld0lEE4KBSUQTpr+/H/fddx+OHTuGZ555BrfccovcJRFNGLaVENGEuf/++7Fjxw6UlJTg6quvHvFjvve970Gj0UxxZURXjoFJRBNCFEXMmjULg4ODl/yY6Oho7NmzZwqrIpo4DEwiIiIPcKkNIiIiDzAwiYiIPMDAJCIi8gADk4iIyAMMTCIiIg8wMImIiDzAwCQiIvIAA5OIiMgDDEwiIiIP/D/KyLJNRbF+hgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a, b, n = -4, 4, 500\n", "x = np.linspace(a, b, n)\n", "xz = np.linspace(a, z, n)\n", "\n", "fig, ax = plt.subplots(figsize=[8,4])\n", "ax.fill_between(xz,f(xz), color='LightSkyBlue')\n", "ax.hlines(0, a, b,'k','solid')\n", "ax.vlines(z, 0, f(z),'r',linewidth=2)\n", "ax.plot(x,f(x), linewidth=3)\n", "\n", "ax.annotate(r'$\\Pr\\left(\\tilde Z\\leq z\\right)$',[-1, 0.08], fontsize=18)\n", "ax.set_yticks([])\n", "ax.set_xticks([z])\n", "ax.set_xticklabels(['$z$'],fontsize=20);" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "vscode": { "interpreter": { "hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186" } } }, "nbformat": 4, "nbformat_minor": 4 }